Kimi-Linear is a 3B active, <6T tokens experiment. Its architecture is nothing sci-fi (except it works) – NoPE MLA + fancy GatedDeltaNet. this very strongly suggests to me that a) Gemini long-context attention doesn't have any secret sauce b) it's all about TPUs. No "Titans".
Context Arena Update: Added kimi-linear-48b-a3b-instruct [11-08] and kimi-k2 (Thinking) [11-06] to the MRCR leaderboards. The Linear 48b results are fascinating! It actually outperforms the new Gemini 3.0 Pro Thinking on 4-needle and 8-needle tasks at higher context lengths (512k+). I've added it to 2needle, 4needle, and 8needle. kimi-k2 (Thinking) lands lower on the leaderboards (Rank #22 for 2-needle AUC @ 128k), with a hard context ceiling around 262k. I did not run it for 2needle and 4needle. All results at: The performance curve for the Linear model is distinct: while it underperforms Gemini 3 significantly at shorter contexts (<=256k) on the difficult 8-needle test, its degradation slope is much flatter. Gemini starts higher and drops fast; Kimi starts lower but holds steady, overtaking Gemini at the higher end. However, note that kimi-linear-48b has noticeable performance drops past 128k on the easier 2 & 4 needle tests. Additionally, due to lower token efficiency compared to Gemini/GPT, only ~60% of the 1M token tests successfully ran (hitting limits/OOM). So some caution with the results at the 1M level. kimi-linear-48b results: 2-Needle Performance (@ 128k / @ 1M): - AUC: 96.5% (vs Gem 3: 99.5%) / 81.7% (vs Gem 3: 85.5%) - Pointwise: 96.0% (vs Gem 3: 99.0%) / 77.0% (vs Gem 3: 72.2%) 4-Needle Performance (@ 128k / @ 1M): - AUC: 85.5% (vs 85.8%) / 62.7% (#1, beating Gem 3: 57.3%) - Pointwise: 83.7% (vs 80.8%) / 51.5% (#1, beating Gem 3: 34.3%) 8-Needle Performance (@ 128k / @ 1M): - AUC: 54.9% (vs 73.0%) / 43.8% (#1, beating Gem 3: 39.0%) - Pointwise: 49.0% (vs 54.2%) / 35.3% (#1, beating Gem 3: 24.5%) A very different architectural approach yielding impressive stability at scale. Because of its current price point, it is very competitive for long context (MRCR). Enjoy. @Kimi_Moonshot @GoogleDeepMind @googleaidevs @OpenAI @OpenAIDevs
6,32 tn
14
Innehållet på den här sidan tillhandahålls av tredje part. Om inte annat anges är OKX inte författare till den eller de artiklar som citeras och hämtar inte någon upphovsrätt till materialet. Innehållet tillhandahålls endast i informationssyfte och representerar inte OKX:s åsikter. Det är inte avsett att vara ett godkännande av något slag och bör inte betraktas som investeringsrådgivning eller en uppmaning att köpa eller sälja digitala tillgångar. I den mån generativ AI används för att tillhandahålla sammanfattningar eller annan information kan sådant AI-genererat innehåll vara felaktigt eller inkonsekvent. Läs den länkade artikeln för mer detaljer och information. OKX ansvarar inte för innehåll som finns på tredje parts webbplatser. Innehav av digitala tillgångar, inklusive stabila kryptovalutor och NFT:er, innebär en hög grad av risk och kan fluktuera kraftigt. Du bör noga överväga om handel med eller innehav av digitala tillgångar är lämpligt för dig mot bakgrund av din ekonomiska situation.